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J. Phys. A: Math. Gen. 16 (1983) 3867-3878. Printed in Great Britain 

Coordinate modelling for static axially symmetric 
electrovac metrics? 

J Carminatit and F I Cooperstock 
Department of Physics, University of Victoria, Victoria, British Columbia, Canada 
V8W 2Y2 

Received 9 June 1983 

Abstract. A new technique of coordinate modelling is introduced. It is shown that the 
static axially symmetric electrovac field equations are easier to solve in terms of coordinates 
which are specially adapted to the electrostatic equipotential contours of the system. 
Several new exact solutions are readily found by separating variables and by employing 
complex analytic functions. A framework for the construction of general solutions of the 
axially symmetric electrostatic vacuum field equations is presented and the Weyl Solutions 
are shown to be trivially extractable. 

1. Introduction 

The standard use of symmetry in the search for exact solutions of the Einstein field 
equations is an old and familiar tool. The successful imposition of spherical symmetry 
by Schwarzschild, cylindrical symmetry by Einstein and Rosen and static axial sym- 
metry by Weyl and Levi-Civita readily come to mind as examples in which very long, 
complicated, nonlinear partial differential equations of general relativity become 
relatively compact and very manageable. However, once the obvious symmetry 
techniques are exhausted, one must seek new tools to extend the search for exact 
solutions. While some methods of a rather complicated mathematical character do 
exist, in this paper we introduce a new straightforward approach. Although our 
application is confined to the static, axially symmetric electrovacuum equations, it 
would appear to be extendable to other types of problems as well. 

Specifically, while the Einstein field equations for the axially symmetric electrostatic 
vacuum fields are greatly reduced in complexity by the Weyl form of the metric, the 
equations which relate goo and 0, the electrostatic potential, are still in general difficult 
to solve. Weyl (1917) determined a whole class of solutions which are generated by 
harmonic functions when the gravitational and electrostatic equipotential surfaces are 
assumed to coincide (goo=goo(0)).  (We will refer to these as ‘Weyl solutions’ or 
solutions of the ‘Weyl form’.) However, when this special condition is removed, only 
a handful of solutions have been found and then only by transformation techniques 
(Bonnor 1966, 1979, Kramer and Neugebauer 1969, Gautreau and Hoffman 1970, 
Kinnersley 1974, Herlt 1978, Carminati 1981). 

t Supported by the Natural Sciences and Engineering Reseaxh Council of Canada, Grant No A5340, a i d  
an NSERC Post Docivral Fellowship (JC). 
$ Present address: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada 
N2L 3Gl. 
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In this paper, we change from the cylindrical polar coordinates p, z used by Weyl 
to a general orthogonal set x , x . We then specify that the constant x 1  coordinate 
surfaces coincide with the constant electrostatic potential surfaces, i.e. Q, = @(XI). In 
the classical picture, the orthogonal x 2  contours then follow the electric field lines. 
In other words, the coordinate system, from the outset, is forced to follow the full 
electrostatic character of the system and one is in a position to benefit from whatever 
symmetry Q, may display. While there is an immediate gain in that 0, which involves 
only one coordinate, simplifies the differential equations, there is a price to be paid 
in that part of the complexity of the problem has been transferred into that of the 
construction of the coordinate system. However, this division of labour is entirely 
worthwhile because each part is manageable and several new solutions are readily 
found. Moreover, for one particular important class (a  = 1, a defined in 0 2), compat- 
ible coordinate system candidates are readily found by extracting the real and imaginary 
parts of complex analytic functions. In addition, the new approach enables us to 
derive a framework for the construction of general solutions of the Einstein field 
equations for axially symmetric electrostatic fields in a vacuum. From the general 
framework, the Weyl solutions emerge trivially without any requirement of the Weyl 
insight that e-w dQ, is harmonic. 

In 0 2, we develop the formalism for electrostatic conforming coordinates and 
present the field equations and the linked coordinate equations. In § 3, we treat the 
simply separable form for p in detail. The simply separable p is shown to be consistent 
only with the simply separable a and a is hence chosen to be 1 with no loss in 
generality. All of the non-Weyl solutions are determined for this case. The electro- 
static potential is shown either to diverge or to have a bounded angular behaviour. 

In 0 4 ,  for a separable (and hence chosen to be l), we consider p to be in the 
form of a separable expansion and develop the field equations. For a special subclass 
where all constants of the expansion for ey and eH (defined in § 2) are non-vanishing, 
the expansion in p has at most two linearly independent terms. This form is developed 
in detail in 8 5 where four new multi-parameter solutions are given. In § 6 ,  the special 
cases where P' and H '  are respectively zero are treated. Four additional solutions 
are given. 

In the a = 1 class, a simple approach for the determination of compatible coordinate 
candidates via complex analytic functions is developed in § 7, and a new solution of 
the non-separable form, which arose from this method, is given. 

In 0 8, we show that the field equations, expressed in the modelled coordinate 
contours, readily lend themselves to infinite-series expansions and the Weyl solutions 
are then trivially extracted. In 0 9, we consider the symmetry transformations which 
map existing static solutions into new stationary solutions. One of our solutions so 
transformed is shown to have a NUT-like aspect. Some properties of other solutions 
are also considered. We offer some concluding remarks in § 10. 

1 2  

2. The formalism 

Static axially symmetric fields outside matter can be described by the Weyl (1917) 
metric: 

(2.1) ds2 = e" dt2 - ev-w[dp2 + dz2] -p2  e-w d d 2  

? A simple computation using the Newman-Penrose formalism shows that all met r ia  of this form must be 
of Petrov type I or type D. 
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where w and v are functions of p and z .  In the electrostatic vacuum, w and 0 satisfy 
the Einstein equations 

(2.2) 

(2.3) 

where subscripts indicate partial differentiation with respect to the indicated variable. 
Once w and @ are known, U can be determined by quadratures. While outwardly 
simple in appearance, equations (2.2) and (2.3) are nonlinear and strongly coupled 
in w and @. 

At this point, we introduce the orthogonal electrostatic conforming coordinates 

v 2 w  = w,, + w,, + w,/p = 2 e-wV@ - V@ 

V2@ = Va) ' v w  = a p w ,  + QZW, 

xl, x 2 :  

p + p ( x 1 , x 2 ) ,  z + z ( x 1 , x 2 )  (2.4) 

ds2 = ew dt2 - eu-w[$ll dx l 2  +222 d x 2 * ] - p 2 ( x  ', x 2 )  e-w d#? 

with @ and t unchanged. The Weyl metric, equation (2.1), becomes 

(2.5) 
where 

211 = P12 + 2 I?,  2 2 2  = pz2 + 2 z 2  (2.6) 
and subscripts 1 and 2 denote partial differentiation with respect to x ', x 2  respectively. 
The orthogonality of both the (p, z )  and (x ', x 2 )  coordinate systems is expressed by 

(2.7) 
In the new system, the flat three-space operators V and V2 of equations (2.2) and 
(2.3) (neglecting the differentiation with respect to 4) are 

2 -  .4 

P 1 P ? + Z l Z ?  = 0,  a2p1z 1 +P?Z?  = 0,  =g22/211. 

where and a*? are unit vectors in the x 1  and x 2  directions and 2 = p2211222 is the 
determinant of the flat three-space metric. Since x is chosen to follow the electrostatic 
contours, @ = @ ( x  ') and from equations (2.3) and (2.8), 

.- 

This is easily integrated to yield 

ew(x ', x 2 )  = p ( x l ,  x 2 ) a  l ~ ( x  ' ) I  ePHlxZ', ( Y > O  (2.10) 
where H is a function of integration. 

Due to the @(XI) constraint, the choice of the form of the x 1 , x 2  coordinates 
determines the form of the solution. Their relationship to p and z specifies this choice 
and hence it is appropriate at this stage to return to the constraint equations (2.7) 
which govern them. These are equivalent to 

p2=ffz1, 22 = -ap1 (2.1 1 )  

which are recognised as the Cauchy-Riemann conditions when (Y = 1. They are 
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integrable provided 

(ap1)1+ (p2 la)z  = 0, (2.12) 

which is the two-dimensional Laplace equation in arbitrary orthogonal curvilinear 
coordinates. 

Using equations (2.8) and (2.10), the other field equation (2.2) can be expressed as 

or, using equation (2.12), in the more symmetrical form 

[ P ( a l + a ~ ' ) ] l + [ ~ / a ) ( a z / a  - ~ ' ) ] ~ = 2  ey+H 

where 

\I'= ln@'I. 

(2.13) 

(2.14) 

(2.15) 

Equations (2.12) and (2.13) or (2.14) determine all static axially symmetric elec- 
trovac solutions. Because of the linkage of the coordinates to 0, they are particularly 
well adapted to the determination of new exact solutions by the technique of variable 
separations. As particular examples, we will examine the solutions when 

p = a ( x 1 ) 6 ( x 2 )  (2.16) 

and t 

p = a l ( x  ' )6 i (x2)  + a d x  ')62(x2), a = c ( x 1 ) d ( x 2 ) .  (2.17) 

Firstly, regardless of the form of p, if a is simply separable as in (2.17), it is clear 

x '  = f(X'), x 2  = g ( X 2 )  (2.18) 

can be invoked, preserving the equipotential contours, which makes a = 1 in the X ' ,  

X 2  system. Thus, for the example of (2.17), we will actually perform the computation 
in the a = 1 gauge. Moreover, we will show that if p is simply separable as in (2.16), 
it follows that a must be separable. Thus, the p-separable example will also, for 
simplicity, be considered in the simplest gauge as well, a = 1, preserving all generality. 

When a = 1, equations (2.11) and (2.12) become the familiar Cauchy-Riemann 
and harmonic equations 

p2 = 21, 2 2  = -p1, PI1 +p22 = 0 (2.19) 

from (2.5) and (2.7) that a coordinate transformation 

and equation (2.14) becomes 

( p ~ ' ) ,  - ( P H ' ) ~  = 2 eyCH (2.20) 

Spherical polar coordinates, Erez-Rosen (1959) coordinates and other known systems 
belong to this class. 

The simplicity of the a = 1 class presents us with a second approach for the 
determination of new exact solutions. This is due to the fact that equations (2.19) 
allow one easily to determine infinitely many x ', x z  systems which satisfy the coordinate 
requirements. One simply chooses any complex analytic function of x + ix '. The 
real and imaginary parts are respectively chosen as z and p,  which, of course, satisfy 

+ Subscripts 1 and 2 on a and b are used to distinguish the functions rather than represent differentiation. 
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equations (2.19). One then seeks q, H pairs which, with the given p, satisfy equation 
(2.20). This technique and a new solution will be developed and exhibited in 9 7. 

3. The simply separable form 

We first solve the p form of equation (2.16). This p, in conjunction with the first of 
equations (2.7) and the new variables 

x = 2 a ,  f 2 z i b 2  (3.1) 

(az/ax')(az/ai2) = -1. (3.2) 

z = k a 2 / 2 - b 2 / 2 k + l  (3.3) 

- 1 - 1  2 

yields+ 

Using Charpit's method, the general integral of equation (3.2) is 

where k and 1 are constants. From (3.3), (2.16), (2.11) and (3.3), we see that a must 
be separable. Moreover, from the discussion of $ 2, there is then no loss in generality 
in taking a = 1, which we shall do, From (2.19) and (2.16), 

(3.4) 
where the separation constant A 2  has been chosen to be positive so that x 1  has a 
'radial-like' character. Using the field equation (2.20), we see that there are two cases 
to consider: 

a " =  A 2 a, b" = -A ' b  

(i) eH = kb,  (ii) eq = ka (3.5) 
where k is a constant. If (i) holds, then, using (2.13), we find that w = w(x l )  and 
hence this is a member of the Weyl class. However, case (ii) yields the non-Weyl 
solutions 

(3.6) kb eH = sech2 G 

where # 

-N-'  tanh-'[(1 - Y ~ ~ ~ ) ~ ' ~ ] + D ,  A Z O  
N-'  In b + D, A = O  

G = {  

D, N are constants and y 2 = A 2 / N 2 .  
From equations (3.5(ii)) and (3.4), 

i k / A  '(A 2a2 + Q)"2, A f O  
A = O  

(3.7) 

(3.8) 

where Q and M are constants and$ 

ew = (kab cosh G ) 2  (3.9) 
follows from equations (2.16), (3.5(ii)) and (3.6). Finally, the connection of a and b 
with the cylindrical polar coordinates is completed by integrating the Cauchy-Riemann 

t Note that for a 'b '  = 0, one is restricted to the contours of the cylindrical polar coordinates themselves. 
$ Note that for A f 0 ,  N = -1 and D = 0 gives a Weyl-class solution. 
9 This IS included in the Gautreau-Hoffman (1970) solutions. 
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equations: 

(A -L)’ = (N’ - A  %’)(Q + A  ’ a 2 ) ,  A f O  

2(2 -L )=Qa2-b2 /Q,  A = O  
(3.10) 

where L is a constant of integration. 
The possible asymptotic forms for @ are 

@ - * r  and Q, - *(Q ‘/’/A ’) sin e (3.11) 

for the A # 0 case and 

Q, - r[l + 3 cos2 or r sin 0 (3.12) 

for the A = 0 case. It is interesting to note that in the second of equations (3.11), Q, 
approaches different finite limits in the different directions. When the latter is mapped 
into stationary vacuum form in 0 9 using the Bonnor (1966) transformation we will 
see that the new metric displays the NuT-like (Newman et a f  1963) behaviour insofar 
as spin is concerned. 

4. Separable expansions 

It is natural to develop a framework which fully utilises the single variable dependence 
of @. To this end, with a separable (and hence chosen to be unity), we assume a p 
of the form of a separable expansion 

where the ai and bi are all linearly independent. Moreover, we assume for now that 
V’ f 0, H’ # 0. From (4.1), and (2.20), 

(4.2) 

In succession, equation (4.2) is divided by ulbl, (az/a ~) ’ (bdb l ) ’ ,  
[ ( a 3 / a l ) ’ / ( a ~ / a l ) ’ ]  * [(b3/b1)‘ / (b2/bl)’] ,  etc and is differentiated with respect to x 1  and 
x 2  at each step until the series is exhausted. The final equation is then integrated 
back to yield 

n 

e* = 1 riai 
j = 1  

or 

eH = f mib, 
j = 1  

(4.3) 

(4.4) 

where l,, m, are arbitrary constants. 
Note that p + p  under the scale transformation a, + u,/k,, b, + k,b, ( j  not summed) 

for constants k,. This can be used to make all of the non-vanishing 1, or m, equal (not 
both simultaneously) so either I, = 1 or m, = m. Next, equation (4.3) with I, = I or 
equation (4.4) with m, = m is substituted into each successive integrability equation, 
simplifying each in turn. For the case where either all the 1,’s or all the m,’s are 
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non-zero, one can exploit the invariance of p and e* or eH under aj*ak, b,-bk, 
j ,  k = 1, , , , , n to obtain the following two distinct sets of coupled, nonlinear ordinary 
differential equations which express the integrability requirements: 

n 

I: 2 e w = E 1  ak (4.5) 
k = l  

11: 

j # k  

n 

(bkH')' = Ebk + F 1 b, - E l  eH 
j = 1  
j # k  

n 

2 e H = E l  1 bk 
k = l  

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

k = 1,2,  . . . , n ; E,  El, F are constants. 
Note that equations (2.19), (2.20) and (4.1) are invariant under the transformation 

x ' + ix 2 ,  

ak * b k ,  Y * H  

x 2 +-ix 1 , i = f i  
(4.11) 

which also links sets I and 11. It is interesting to note that using either set I or set 11, 
it can be shown that the expansion in p of (4.1) has at most two linearly independent 
terms. However, it must be stressed that this result follows only when either all the 
li's or all the mi's in (4.3), (4.4) are non-zero. For this case, we now consider the form 
of p with two separable products of equation (2.17) when a = 1. 

5. Two separable products 

For the p form of equation (2.17) in the a = 1 gauge, it is most convenient to define 

From equations (5.1) and (2.171, p retains the original structure 

P = A i ( ~ ' ) B i ( x ~ ) + A z ( x ' ) B 2 ( ~ ~ ) ,  a = 1. (5.2) 

The problem at hand is one of solving set I (equations (4.5H4.7)) or set I1 (equations 
(4.8)-(4.10)) in conjunction with this p which in turn must be harmonic, V 2 p  = 0. 
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Until the end of this section, we will concentrate on set I. After some relabelling of 
constants, set I with equations (5.1) and (5.2) yield 

2 e*= QA1, A Y  (5.3), (5.4) 
set I: [A2A;/A,I’= (+A29 [B’H’]’ = P2Bl - Q eH, [B2H’]’=(+B2. 

(5.51, (5.61, (5.7) 

The harmonic condition, Vzp = 0, in conjunction with equation (5.4), yields the 
following choice of constraint equations (depending on the selection of constants): 

C.I( 1) A$=k lA2+Al ,  -Bi’=P2B1+B2, -BS= klB2 (5 .8 )  
or 
C.I(2) A $ =  klA2, BY= -P2B1, B$=-klB2 (5 .9)  

where P,  U and k l  are constants. 
From equations (5.4) and (5.5), with /3 # O,? 

Al=Dicosh[,  A 2  = D2 cosh 6 sinhs-’ 6 (5.10) 

where [=px’ + T ,  S =(+alp2 and D1, D2 and T are constants. The case where A l  is 
of the form e’’’ will be treated later when the constraint set C.I(2) is used. For the 
constraint set C.I( l), however, we find with equation (5.5) that the simple exponential 
solution leads to A l  being proportional to A2 which is the case already treated in § 3. 
Moreover, C.I( 1) and equation (5.10) yield only two possibilities, S = 1 or S = 3. The 
6 = 1 trial again leads to a simply separable p and the S = 3 trial leads to a form for 
eH, B1 and B2 which cannot satisfy equation (5.6). Therefore C.I(l)  leads to no new 
solutions. 

Considering C.I(2), equations (5.10) yield the compatibility condition 

( S 2  - k 1 / p 2 )  + (8 - 1)(S - 2) ~ i n h - ~  6 = 0. (5.11) 

S = 1 again gives the simply separable p. The S = 2 case, with a rescaling of coordinates 
to make p = 1, yields the new solution 

p = -D coshx’ cosx2+E sinh 2x’sin 2x2 

z + z o  = E  cosh 2x1 cos 2x2+D sinh x1 sin x2  

eH = Q cos x cosec x , 
(5.12) 

ev = D/Q cosh x 1  2 2 2  

where D, E, Q and z o  are constants. Suitable ranges for the coordinates are f 1  < x < 
00, O<x2<7r/2 for Q, E positive. The value of f ’  depends on the choice of D and 
E. 

Other solutions for set I in conjunction with the constraints C.I(2) are found by 
choosing 

A~ = D~ e“. (5.13) 

This leads to the solutions 

p = -D ex’ cos x 2  + E ex”2 sin(x2/2) 

z +to = D ex’ sin x2  + E  ex”2 cos(x2/2) 

eH =Q/( l -cosx2) ,  

(5.14) 

e* = (D/2Q) e’] 
i No solution is possible with p = 0. 
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and 
p = D ex' cos x 2  - E  e-'*' sin 2x 

z + z o =  -D ex'sin x'+E e-''' cos 2 x 2  

eH = 2 0  cos xz ,  

(5.15) 

e* = (D f 2 Q )  ex ' .  

Suitable ranges for the coordinates in solution equation (5.14) are x' < x l  <CO, 

1 r f 2 < x ~ < 3 7 r f 2  andin equation (5.15), X 1 < x l < ~ ,  - 1 r f 2 < x ~ < ~ f 2  (E>O). 
Performing the integrations for set 11, or applying the transformation of equations 

(4.1 l), we find only one new solution, 

p = D sinh 2x' sin 2 x 2  - E  sinh x '  sin x 2  

z +zo=  D cosh 2 x 1  COS 2 ~ '  - E cosh X '  COS X '  

eH = QE sin x 2 ,  

(5.16) 

e* = (l/Q)(sinh x'/cosh2 x '). 

6. Two special cases 

In $ 4 ,  we developed the separable functions formalism under the assumption that 
neither V' nor H '  were zero. We now consider the special cases where either one 
vanishes. From (2.19) and (2.20), we find for V' = 0, the following two solutions: 

p = - 3 k ( ~ ~ ) ~ [ ; ( ~ ' )  + 4 ]  + 2kq3 + [ ( x 2 )  + q ] [ 3 k ( x  ' I 2  + k i x '  + k2] 

z + ZO = ;k l[(x  1)2 - ( x ~ ) ~  - 2q ( x 2 ) ]  + k (X ')[(x ' I 2  - 3(x2I2 - 6 q ( x 2 ) ]  + kz(X '1 
@ = k x ' ,  eH = ( x 2 ) + q  

(6.1) 

and 
p = [ k l ( x  ') + kz][q - S ( x 2 ) ] - 4 k  

z + z O  = -$kZ(x ') -$k1[4q(xZ)  - (x')' + (X ' ) 2 ]  

@ = k x ' ,  eH = [q - 5(x ' ) I - * .  
Similarly, when H '  = 0, there are two solutions, 

p = 3k (X ' ) '[q + f ( x  ' ) I  - 2kq3 + [(x ') + 4 ] [ - 3 k ( ~ ~ ) ~  + k i ( x ' )  + k2I 
z + z o  = ( x  1 1 1  ) ( ~ x  +q)[-6k ( x 2 )  + k i ]  + k2(x2 )  + (x212[k c x Z ) - k i / 2 1  

e* = = q  +(xl),  eH - k  
and 

p = 4k  + (4 - ;X ' )[ k I(X 2 ,  + kz]  

z + zo=$kl[4qx1 - ( X  ')'+ (xZ)']+:k2(x2) 

@' = [q - +(X 1 ) ] - 2 ,  e H = k  

where 4, k ,  k l ,  k 2  and zo are arbitrary constants. 

7. Method of complex analytic functions 

(6.3) 

(6.4) 

In $ 2, we saw that for LY = 1, p and z satisfy the Cauchy-Riemann equations. 
Moreover, it is well known from complex analysis that the real and imaginary parts 
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of any complex analytic function also satisfy the Cauchy-Riemann equations. Such 
functions can be readily constructed and hence we are presented with yet another 
avenue of approach to new solutions: simply construct an analytic function of the 
complex variable x ' + ix 2 ,  

f = f ( x  + ix2). 

Then choose Re(f) = z ,  Im(f) = p and a coordinate system which is consistent with 
the structural constraints is realised. If one can then find a 9, H pair (or pairs) which, 
with the new p, satisfy (2.20), a new solution (or solutions) is found. For example, 
the real and imaginary parts of the complex function 

are 
f= -i(x'+ix2)-2 (7.1) 

Re(f)  = - ~ x ' x ~ [ ( x ~ ) ~ + ( x ~ ) ~ ] - ~ ,  (7.2) 
Im (f) = [(x 2)2 - (x ')'][(x + (x I . 2 2 -2 

Choosing p as Im (f) and z as Re (f), we find that 

ey = k (x 1 ) - 2 ,  eH = k-'(x2)-2 (7.3) 
satisfy (2.20) and hence we have a new solution. Moreover, this is the first which we 
have found that does not have p as a sum of separable products of functions of x 1  
and of x 2  as in (4.1). 

8. General formalism and Weyl solutions 

There is an additional benefit in modelling the coordinate system to conform to the 
electrostatic equipotential contours. This derives from the fact that the field equations, 
re-expressed in this system, readily lend themselves to infinite-series expansions to 
express all axially symmetric electrostatic fields in a vacuum. We set (Carminati and 
Cooperstock 1983) 

pa =xaJ(x ' )6J (x2) ,  I a- '=xA,(x1)B,(x2) .  I (8.1) 

2 e H @ ' = ~ 6 , A , + ~ a , A K R I K ;  I (8.2) 

A, = (a i  +a,@"/@')', 

Equations (2.13) and (8.1) imply 

1.k 

n l k  = [Bk eH (6, e-H ) ' ] I .  

With the power series form A, = a, = (x ' ) I ,  equation (8.2) becomes 

2 eH@L= 1 n I k  +E* [yb,, 

@' = 1 @L(x y, 
i 3 k  I 

j + k = n  

I: constants 
n 

where X* represents a summation over the linearly independent 6,'s. 
Now let A, be expressed as a power series 

A, = il,k (x l ) k .  
k 

(8.3) 

(8.4) 
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It then follows from equations (8.2H8.4) that 

bjAin = 1 * lib, 
i i 

(8 .5)  

which relates the A and I coefficients. 
At this point, it is of interest to test the entire formalism and prove its utility. To 

this end, we will now extract the complete set of Weyl solutions. Moreover, we will 
do so without the use of Weyl’s insight that I e-w d@ is harmonic. If we demand that 
the gravitational and electrostatic equipotential contours overlap, then w = w (x *) since 
@ = @(xl). It then follows from (2.10) that p a  must assume the simply separable form 
a ( x l ) b ( x l )  and be-H must be a constant. These results, in conjunction with the 
formalism, yield 

(u ‘+a@‘ ‘ /@’) ’=  2p@‘  (8.6) 

which integrates to 

where p ,  q and s are constants. 
With (8.7) and the specification of a given coordinate system, the corresponding 

explicit Weyl solution is immediately found. For example, x ’  = r, x 2  = cos 8 yields the 
charged Curzon metric (Cooperstock and de la Cruz 1978, 1979). 

The fact that the Weyl solutions simply emerge from the w = w(xl)  restriction 
illustrates the very natural aspect of coordinate modelling. Indeed, the modelling has 
already incorporated the harmonic aspect through the demand on the constraint for p. 

9. Transformations and properties of solutions 

In 0 3, we found for the simply separable case that with A # 0, the potential @ could 
be chosen to approach *(Q1” /AZ)  sin 8 asymptotically. This kind of behaviour lends 
itself to a transformation from the static electrovac form to a new NUT-like stationary 
vacuum metric by a Bonnor transformation (Bonnor 1966, 1979). Bonnor has shown 
that a transformation from the metric of equation (2.1) to the stationary vacuum metric 

d s2=e*(d t+w d ~ ) * - e e - w [ e ‘ ( d p 2 + d z 2 ) + p 2  d4’] (9.1) 

e* = P w = @  (9.2) 

is achieved by taking 

where w is the angular velocity. Thus, with the Bonnor transformation, the asymptotic 
sin 8 form of @ is transferred to w and this is precisely the NUT-like property. 

It is also worth noting that Kramer and Neugebauer (1969) and Kinnersley (1973) 
have developed symmetry transformations which map static solutions into stationary 
electrovac solutions. For example, the Kinnersley class IV transformation applied 
to a static electrovac solution yields the stationary electrovac solution where 

e m  = e w / ( l  + p 2 c 2 ) ,  V x u  = -2p e-”V& (9.3) 

E = e w  -a2, p a real parameter. This, as well as their class V transformation, can be 
used to generate new stationary metrics from our new static metrics. 
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From the solutions which we have already found, there is a plethora of possibilities, 
particularly when one considers all the arbitrary constants. In the following, we 
enumerate some of the properties of the solutions. 

From (3.7), (3.8) and (3.10) for the A = O  case, @ - r f ( e )  asymptotically where 
f ( 8 )  = (1 + 3 cos’ 8)l” or f ( 8 )  =sin 8. Thus, the asymptotic form of the electric field is 

E = -[f(s):+f’(e)e^] (9.4) 

which neither diverges nor goes to zero. 
From (5.14) and (5.15) with E =0, @ approaches r/2Q asymptotically and hence 

the electric field approaches the constant value -(1/2Q)?. 
From (6.4), for kZ and zo  set to zero, @ exhibits line singularities. This is also the 

case for several of the other possibilities. An outstanding challenge is one of determin- 
ing non-Weyl solutions by our method which are also asymptotically flat. Although 
these are the solutions most eagerly sought for their physical interest, other non- 
asymptotically flat solutions can be of interest (see e.g. Ernst 1976). 

10. Concluding remarks 

Using the coordinate-modelling technique, we have been able to extract many new 
non-Weyl solutions of the static axially symmetric electrovac equations. This has been 
possible because the method forces the mathematical structure to conform to the 
inherent symmetry of the system. Hopefully, this technique can be used to simplify 
other problems as well. 

Future efforts will be channelled in two directions. Firstly, the inventory of the 
readily extractable solutions will be filled out. Secondly, it would be most useful if 
specific physical aspects of a system could be injected at an intermediate step in the 
formalism. We will attempt this in future work. 

Note added in proof. We have now found the most general p structure allowed by 
the a = 1 equations (2.19) and (2.20). 
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